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THEORY OF GALVANOMAGNETIC EFFECTS IN METALS 

by Gale Fair  

Lewis Research Center  

SUMMARY 

The Boltzmann equation for the distribution function of conduction electrons in a 
metal is used to describe the response of the electronic system t o  applied magnetic and 
electric fields. The vector mean-free-path formulation, originally developed by Taylor 
to calculate the zero-magnetic-field resistance of metals, is used to find an exact solu- 
tion to the linearized Boltzmann equation for static and homogeneous applied fields. The 
conductivity tensor is evaluated in t e rms  of two operators, one describing the scattering 
between electronic states and the second including the effect of the Lorentz force. The 
eigenfunctions of these operators provide a natural framework for a quantitative descrip- 
tion of the galvanomagnetic properties of a metal, for both an assumed Fermi surface 
and a scattering model for the conduction electrons. 

Of particular importance is the treatment of the electronic scattering processes, a 
treatment sufficiently complete so as to  allow a separation of effects due to the scatter- 
ing processes from the effects arising from topological features of the Fermi surface. 
To demonstrate the implementation of the theory, and to illustrate the application of the 
representation theory of finite groups, two examples a r e  considered. 
gas, with spherically symmetric scattering, is shown to  give the result familiar from a 
relaxation-time approximation (i. e . ,  a Hall  effect but no magnetoresistance). The 
second example is a treatment of a degenerate scattering kernel, still within the frame- 
work of a spherical Fermi surface. A special case of this degenerate kernel theory is 
given in a recent work by Jones and Sondheimer, and a sample calculation is presented 
for comparison with this work. 

The free-electron 

THE BOLTZMANN EQUATION 

A galvanomagnetic experiment measures the voltage response to an externally ap- 
plied current for a metal sample in a magnetic field. The experimentally determined 



Ill 

quantity is the resistivity tensor of the metal as a function of the magnetic field (both 
strength and orientation) and the temperature. The experiment constitutes a probe of 
the properties of the conduction electrons in the metal and should, in principle, yield 
information about the scattering processes present and the structure of the Fermi  sur-  
face. Although galvanomagnetic experiments have been performed for many years,  no 
general theory has yet appeared that gives a quantitative connection with experiment. In 
this report a semiclassical theory is presented for the galvanomagnetic effects in metals 
within the framework of the independent-particle description and the Boltzmann equation. 
A closed-form solution of the Boltzmann equation is found that is valid for  any strength 
of the magnetic field, and the resulting conductivity tensor is calculated. After a dis- 
cussion of the implementation of the formalism for calculations, consideration is given 
to the special case of a metal having a spherical Fermi  surface, for two different scat- 
tering models. 

The semiclassical theory for electrons in metals is based upon the existence of a 
distribution function f(r, k, t). The quantity f(r, k, t)dr dk is the probability of finding 
an electron within the element of volume d r  dk that is centered at the point (r, k) at the 
time t in the six-dimensional space of position r and Bloch wave-number index E 
(ref. 1). For a spatially homogeneous metallic sample with no thermal gradients pres- 
ent, it is customary t o  assume that the spatial variation of f is negligible (ref. 2). 
Then for f we can wri te  f(k, t), or fk(t). 
the Pauli exclusion principle determines the distribution of the electrons in momentum 
space. The distribution function depends only upon the energy of the electron and is the 

- -  -- 
_- - _- 

- 
For a system of electrons in equilibrium, 

Fe rmi  function, f (ek) = 1 + exp (ck - <)/kBT]}-l; where ek is the energy of the elec- 
O M  

tron, T is the temperature of the system, 5 is the chemical potential, and kB is the 
Boltzmann constant. This function implies a discontinuity in the energy distribution of 

0 the electrons when the system is at absolute zero. When T = 0, f (ek) is 1 if ek < 5 
and zero if  ek > 5 .  The value of the chemical potential at absolute zero 5 (T = 0) de- 
fines the parameter eF, the Fermi  energy. For the special case of a system of f ree  
electrons, the occupied states in wave-number space form a sphere, of radius 
kF = { G i b ,  known as the Fermi  sphere. 

vector k is very useful for the discussion of the transport  properties of metals. The 
locus of this discontinuity in k-space at T = 0 is called the Fermi  surface. Although 
the Fermi surface for the system of conduction electrons in a metal is distorted from a 
sphere by the presence of the lattice of ion cores, experimental evidence (ref. 3) shows 
the existence of such a discontinuity surface at low temperatures. The galvanomagnetic 
experiment is one of a class  of experiments designed to probe the Fermi  surface of 
metals (refs. 3 and 4). As will be seen later, it is the Fermi  surface that helps to de- 
termine the k-states that may participate in transport effects. 

2 

The existence of a discontinuity in the distribution function as a function of wave 
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Before the Boltzmann equation is presented, it is useful t o  briefly summarize the 
semiclassical view of a conduction electron in a metal. At a finite temperature, the 
discontinuity in the distribution function expressed in t e rms  of ck is not sharp, the en- 
ergy range which separates the totally occupied states from the totally unoccupied states 
being a band of width approximately kBT. 
range of energy which is small  compared with the Fermi  energy, there  is still an ex- 
perimentally well-defined Fermi  surface, whose detailed shape is determined by the 
number of valence electrons available, the symmetry of the ionic lattice, and the inter- 
actions between the electrons and their environment (ref. 3). An electron in a state k 
at the Fermi  surface moves with the velocity Vke&)/h, which is, in fact, the group 
velocity of the wave packet describing the electron (ref. 5). An electron in a state k 
may undergo a scattering, which is pictured as a discontinuous change from the initial 
state to a final state z?. The final state may or may not have the same energy as the 
initial state, depending upon the nature of the scattering process. Common causes of 
scattering (ref. 2) a r e  impurities, physical defects in the crystal  such as point defects o r  
dislocations, and, at a finite temperature, the thermal vibrations of the lattice (i. e . ,  
the phonons). A satisfactory theory of the transport properties of a metal must be 
capable of describing the response of the electronic system to external forces, and in- 
clude specifically the effects due to the scattering processes and the nature of the Fermi 
surf ac  e. 

The semiclassical description of transport phenomena is governed by the Boltzmann 

Since this thermal broadening constitutes a 

equation (BE) for the electronic distribution function. The BE is the equation of motion 
for the distribution and is obtained by a consideration of the processes which determine 
the net change in occupation of the volume element dr dk. Although the system is not in 
an equilibrium state when external electric and magnetic fields a r e  present, it is cus- 
tomary to assume steady-state conditions. This means that there  is no net flow from 
the volume element under observation, and thus the distribution function is not a function 
of time. The effect of the external forces  must balance the ra te  of change of occupation 
caused by the scattering. 
phase space volume element, gives 

-- 

The equation of continuity, applied t o  the six-dimensional 

afk dF dE - = - v  f . --vkfk . - -  
= O at r k  dt dt 

where the subscripts on the gradients indicate the variables of the differentiation and the 
t e rm (af/wco,, is symbolic for the ra te  of change in f caused by scattering. In a gal- 
vanomagnetic experiment the temperature is uniform throughout the sample. In this 
case (ref. 2), the spatial derivative of fk will vanish. For a Bloch electron in electric 
and magnetic fields, the t ime ra te  of change of the crystal momentum is given by the 

3 
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L.,-:.~YI.: iL~rcc- 1~ (ref. 6) with the velocity of the electron interpreted as ti-'&/ak. 
-I-'... .... h. - 

dt 

Ths  scaneririg term is obtained by considering the balance between scattering into - . .  
2.22 YP:X rhe state k.  Let Q&,E') represent the transition probability per unit t ime for 
szzxsriq from the initial occupied state k to the final empty state k'. The occupation 
:f 1.5s inirial and final states is restricted by the Pauli exclusion principle for the elec- 
T.TC:IS. and so the scattering ra te  must include factors to ensure that the initial state is 
cccapied while the final state is initially unoccupied. The net change in the occupation 
of rhe state 

- 

due to scattering is (ref. 7) 

The volume element in the integral of equation (3) is defined as (ref, 2) 

- -  
where V is the volume of the sample. The transition probability per unit t ime Q(k, k') 
provides the connection with the microscopic description of the electronic properties of 
metals. This probability of scattering from a state k to a state k? is proportional to  
the square of the matrix element of the transition matrix for the scattering between the 
initial and final states (ref . 2). 

that the scattering is elastic. Under this assumption the transition probability is sym- 
metric (ref. 2), that is, 

The form of the scattering integral (eq. (3)) may be simplified by the assumption 

where Q includes a factor 6(gk - ek,) to conserve energy between the initial and final 
states. This simplification gives from equation (3), 

Q&,k')[f&') - f(k)]dk' (4) 

4 
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I And the BE for elastic scattering is 

- -  
with the energy-conserving 6-function implicit in Q(k, k'). 

(eq. (5)). The first question is the effect of the omission of inelastic scattering proc- 
e s ses  in passing from equation (3) to  (4). The second is concerned with the meaning of 
the integral in equation (4). The symmetry of the transition probability holds t rue  only 
when the scattering is elastic, as assumed. A more general relation may be derived 
from the observation that in the equilibrium state, in which the distribution function is 
the Fermi function, the integral of equation (3) must vanish, so that 

There  a r e  two questions that have been passed over in the derivation of the BE 

Thus, even though Q is not symmetric, there is a function (ref. 7) 

that has the desired symmetry. 
due to  arbi t rary scattering processes is 

In t e rms  of this function, the t ime rate  of change of fk 

In principle, the formalism which is presented in this report may be carried through by 
using this more general form for the scattering term.  
followed by Taylor (refs. 8 and 9) in his solution of the zero-magnetic-field BE. Inelas- 
t ic  electron-phonon scattering makes a negligible contribution to galvanomagnetic effects 
at the low temperatures at which these experiments a r e  performed (ref. 7). The in- 
clusion of only elastic scattering in the present work should still provide a useful com- 
parison with experiment. 

a question of nonuniqueness commonly encountered in the band theory of metals. This 
nonuniqueness has  its origins in the translational symmetry of the lattice. In a pure 
metal crystal  of infinite extent there  a r e  a countably infinite number of points in the 
metal which are equivalent. 

This, in fact, was the approach 

The problem involved in defining the range of the E-space integral of equation (4) is 

These points are connected by finite displacement vectors, 

5 



not by infinitesimal transformations. A translational invariance in configuration space 
always has implications in the momentum properties of a quantum-mechanical system 
(ref. 10). In band theory this gives r i s e  to  the definition of the Brillouin zone and the 
use of two pictures, the extended zone scheme and the reduced zone scheme. The ex- 
tended zone scheme permits all values of k; equivalent points on the multiply occurring 
Fermi surfaces a r e  connected by reciprocal lattice vectors. In the reduced zone scheme 
a Brillouin zone is constructed about a selected lattice point in k-space, the Brillouin 
zone being the locus of points nearer this selected lattice point than any other. In this 
case the only scattering transitions allowed a r e  those which connect two points on this 
single Fermi surface (which, of course, may be composed of a number of separate 
pieces). A much clearer  description of the reduced and extended zone schemes, along 
with a third, the periodic zone scheme, is given by Harrison (ref. 11). 

These different ways of picturing the wave-number distribution of the electrons 
must give identical resul ts  for the electronic properties of the system, and the choice of 
which scheme to use is dictated primarily by considerations of convenience and clarity. 
The convention adopted in this report  is that integrals over wave-number space (which 
will ultimately become integrals over the Fermi  surface) are considered to be  over a 
single Brillouin zone. Whenever it becomes necessary to explicitly define t' 
integration, therefore, the reduced zone scheme shall be used. 

The most fruitful attempts to  describe the transport  processes in metals by means 
of the BE have started with the linearization of equation (5). The distribution function 
f&) is expanded in a power ser ies  in the electric field, and all t e rms  beyond the first 
power of E a r e  dropped. The deviation from equilibrium then is written as (ref. 7) 

region of 

The linearization resul ts  in the following form for the BE: 

Most solutions of this equation have started with the assumption that the scattering t e rm 
may be simplified by means of a relaxation-time approximation. This approximation 
was used by R. G. Chambers (ref. 12), for example, who showed that there  exists an 
expression for the deviation of the distribution function from equilibrium if the scatter- 
ing is governed by a relaxation time, that is, if the probability of a scattering occurring 
in a time dt is proportional to dt with the proportionality constant 1/~&). This is 
equivalent to the identification 

6 
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Budd (ref. 13) has shown that Chambers' solution t o  the BE (which was derived originally 
to  include only an electric field) needed only slight modification to include a magnetic 
field, and that the result  was an exact solution to  the linearized, relaxation-time BE. 
The resulting solution is in t e r m s  of integrals over the past history of the electron, and 
its exact form is not of interest here. Although the form of the solution makes it difficult 
to apply easily to the properties of r ea l  metals, applications have been made t o  the 
theory of transport properties of semiconductors (ref. 14), the attenuation of ultrasonic 
waves in metals (ref. 15), and the asymptotic form of the magnetoconductivity tensor for 
metals (e. g . ,  refs. 16 and 17). 

The introduction of a relaxation time for the scattering is primarily a device for re-  
ducing the BE (in the form of eq. (9)) to a differential equation for the distribution func- 
tion. The applied magnetic field drives a conduction electron in an orbit around the 
Fermi surface in a plane perpendicular to the direction of the applied field. Such a 
simplification of the BE has a natural set  of coordinates in t e rms  of energy, relative 
position on an orbit, and the position of the orbit on the surface. This description allows 
the contribution of an electron to  the transport current to be interpreted in t e r m s  of the 
details of the Fermi surface sampled in its trajectory. Thus, there  is a natural frame- 
work available to  consider the effects of closed orbits, orbits that a r e  closed but extend 
through many zones (in the extended zone scheme), o r  even trajectories that extend in- 
definitely through k-space, as in the case of copper. The effect of each of these types of 
trajectories may be  considered as a function of the lifetime of an electron in its orbit 
before a scattering occurs. 

Azbel', and Kaganov (ref. 18) and Lifshitz and Peschanskii (refs. 19 and 20). These 
authors cataloged a large number of possible Fermi  surface shapes in t e rms  of their 
contributions to the transport  properties in high and low magnetic field strengths. 
catalog of qualitative descriptions still provides the working tools for the experimentalist 
who is investigating the shape of a Fermi surface from galvanomagnetic experiments. 

The preceding discussion was concerned with work which sacrificed any attempt at 
a detailed description of the scattering, the result being a problem which is mathemati- 
cally simple. Although the usefulness of the results, in t e rms  of understanding the ef- 
fects of Fermi surface topology on transport properties, justified the relaxation-time 
approximation, this approach is not adequate to support current experimental work. The 
task of measuring Fermi  surface dimensions has been taken over by experiments relying 
upon other phenomena, such as the de Haas - van Alphen effect. The galvanomagnetic ef- 

This approach to  the transport problem was carried far by the work of Lifshitz, 

This 
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fects, on the other hand, are more useful for investigations of the scattering of electrons 
in metals. Clearly, the relaxation-time approximation is not adequate for such investi- 
gations, and more general theories must be developed. 

One approach to a more satisfactory treatment of the scattering te rm in the BE was 
introduced by Sondheimer (ref. 21). He made the ad hoc assumption that the scattering 
transition probability could be written as a finite sum of products of a function of k with 
a function of k', that is, 

N 

j= 1 

The matrix b.. is rea l  and symmetric, and the rea l  functions si&) a r e  arbitrary,  ex- 
cept that they must be square-integrable in the Brillouin zone. In the theory of Fredholm 
integral equations, such a kernel is called degenerate, and an extensive theory of such 
integral equations has  been developed (Mikhlin (ref. 22) and Courant and Hilbert 
(ref. 23)). The effect of this replacement (eq. (11)) in a Fredholm equation is that the 
integral equation is replaced by a finite set  of linear equations for the matrix elements 
bij, if the functions qi are chosen properly. The effect of this assumption on the BE 
is to reduce equation (9) to  a finite set of coupled differential equations. With this re-  
duction, Sondheimer (ref. 21) and Jones and Sondheimer (ref. 24) were able to discuss 
the resistivity and asymptotic longitudinal magnetoresistance of metals with anisotropic 
properties. Although the use of the degenerate kernel was an arbi t rary construction, a 
partial justification of this form for some types of scattering has been made by Mann 
(refs,  25 to 27). A further discussion of this theory and its relation to  the present work 
is made in the section DEGENERATE KERNEL THEORY. 

The approaches to the transport  problem discussed here  have had one feature in 
common - the linearization assumption of equation (8) or its equivalent. This linearization 
assumes that the deviation from equilibrium of the distribution function is proportional 

other hand, is the observation by Taylor (refs. 8 and 9) that as a consequence of the 
linearization assumption equation (8) may be rewritten, displaying the electric field de- 
pendence explicitly, as 

1J 

, 

to  the magnitude of the electric field. The starting point for the present work, on the t 

# 
1 

- - - af0 
f(k) - 0  - f (ek) = -eE A(k) - 

a'k 
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Thus, the scalar function g&) is replaced by a vector function R ( k ) ,  which has the 
properties of a vector mean f ree  path. It will be shown that the BE has an exact, closed- 
form solution for  n that is valid for any strength of the applied magnetic field. This 
formalism provides a natural framework within which the transport properties of a real  
metal may be calculated. 

particle Boltzmann-equation description is valid for transport processes involving elec- 
t rons in metals. Three basic difficulties with this assumption are the many-body aspects 
of the electron-electron interaction, the inherently nonequilibrium (in the thermody- 
namic sense) nature of the system, and the quantization of the electron system into 
Landau levels by the applied magnetic field. These difficulties may not be resolved 
rigorously from the present state of solid-state theory, but we may present points to  in- 
dicate that this approach is at least a reasonable one to take. 

The questions raised by the many-body aspects of the electron-electron interactions 
in metals apply, at least in large part, to the existence of a Fermi  surface in such sys-  
tems. The long-range correlations of the electrons could be considered too strong t o  
allow such a sharp discontinuity to exist. It appears in reality that such is not the case. 
Work by Migdal (ref. 28) (and discussed by Abrikosov, Gorkov, and Dzyaloshinski 
(ref. 29)) shows that there  is a discontinuity in the electron momentum distribution in an 
electron gas, even in the presence of interactions. 
sharp experimental evidence concerning the size and shape of the Fermi  surfaces in a 
large variety of metals must be considered good evidence that this construction has 
some validity. 

in metals is a question that has received a great deal of attention. The distribution 
function for an electron in an independent-particle model is an approximation to a den- 
s i ty  matrix and a quantum-mechanical master-equation description of a very complex, 
time-varying system. Much effort has gone into attempts to understand the role of the 
Boltzmann equation in the framework of more general formulations of nonequilibrium 
thermodynamics (e. g . ,  the work of Prigogine (ref. 30) and Edwards (ref. 31)). The role 
of the BE as it applies to  steady-state phenomena has been extensively discussed by 
Dresden (ref. 1). Basically, it still remains an assumption that the Boltzmann equation 
is an adequate approach to steady-state processes such as electron transport in metals. 

There are a large number of experiments which observe effects in metals which a r e  
quantum mechanical in origin. These include the de Haas - van Alphen oscillations in 
the magnetic susceptibility, de Haas - Shubnikov oscillations in magnetoresistance 
measurements, magnetostrictive oscillations in the physical dimensions of a metallic 
crystal, and many others. These effects all a r i s e  from the quantization of electron 
orbits in the presence of the magnetic field (i. e . ,  the formation of the Landau levels in 

The fundamental assumption in the work described herein is that the independent- 

Furthermore, the existence of such 

Whether the Boltzmann equation provides a valid description of transport processes 

I 
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the momentum distribution). In contrast with this  list of quantum effects, there  is the 
equally valid observation that, in most cases, these quantum effects are oscillations 
superimposed upon usually monotonic semiclassical effects. For  example, the oscilla- 
tions which appear in the longitudinal magnetoresistance at high fields (the de Haas - 
Shubnikov effect) are structure imposed on a monotonic magncluresistance which can be  
calculated on the basis of the BE. 

from a consideration of the energies involved. Three useful energies for  conduction 
electrons in a magnetic field are the Fermi  energy cF, the width of the thermal broad- 
ening of the Fermi  surface kBT, and the separation of the quantized Landau levels 
Bw =TieH/mc. It is convenient to take some representative numbers for comparison; for 
Pippard's "standard metal" (ref. 3) these energies have the following values: 

Some justification of the applicability of the semiclassical  method may be obtained 

cF = 5.57 eV 

kBT = 3 . 6 2 ~ 1 0 - ~  eV(at 4 . 2  K) 

Bw = 1 . 1 6 ~ 1 0 - ~  eV(at 0 .1  T) 

Thus, the Fermi  energy is many orders  of magnitude higher than either the thermal 
energy or the Landau level separation, and cF is the dominant energy factor. 
ther,  even at l tes la  the level separation is only comparable to  the thermal broadening. 
This latter comparison is further substantiated by the observed fact, mentioned pre- 
viously, that even when quantum effects are present, there  is still a substantial contri- 
bution which is of semiclassical origin. 

In summary, then, although the use of the Boltzmann equation cannot be rigorously 
justified, there  is every indication that it provides a valuable tool for the description of 
conduction processes in metals. On this basis then, we shall proceed to the formalism 
for  the solution of the BE for the galvanomagnetic effects in metals. 

The present work is divided into three principal segments. The following section 
takes the assumption of a vector mean-free-path for the Boltzmann equation, including 
an applied, uniform magnetic field, and t races  the development of an exact, closed- 
form solution for the conductivity tensor. A s  indicated previously, this solution may, 
in principle, be found for all forms of the Fermi  surface and the scattering model; 
elastic scattering has been assumed for simplicity of the mathematics. The next 
two sections t reat  the implementation of the theory, the insight that a knowledge of 
the pertinent lattice point group may bring, and a sketch of the numerical procedures 
involved in performing a calculation. Finally, resul ts  are shown for two scattering 
models. The properties of an isotropic scattering model for a free-electron gas are 

Fur- 
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discussed. And, then, the general implications of a degenerate kernel, as proposed by 
Sondheimer, a r e  discussed with sample results for a spherical Fermi  surface model. 

SOLUTION OF THE BOLTZMANN EQUATION 

The introduction considered the Boltzmann equation for conduction electrons in a 
metal. Steady, homogeneous electric and magnetic fields are applied to  the metal, and 
the sample is assumed to  be homogeneous with a uniform temperature distribution. In 
this situation, the distribution function is a function of 'i; alone, and is written as f@), 
or simply fk. When the scattering is elastic, the Boltzmann equation is 

- -  
where the function Q(k, k') is the (positive) transition probability per unit time for 
scattering from the state E into the state E'. For this case of elastic scattering, 
Q(k, k') is symmetric (i. e. , Q(k, k') = QO(',E)) and is proportional to the energy- 
conserving 6(ek - E ~ , ) .  

equation (13) that does not depend upon the precise nature of the Fermi surface o r  the 
details of the scattering mechanisms. 
conductivity tensor is found. (An earlier version of the formalism described in this sec- 
tion has appeared as ref. 32 . )  

The equilibrium distribution function for the electrons is the Fermi  function f (ek). 
An applied homogeneous magnetic field does no work on the electronic system, and the 
effect of an electric field is to perturb the distribution function to a new function fb. 

_ -  - -  

The objective of the present work, as discussed in the introduction, is a solution of 

In this section a closed-form expression for the 

0 

The deviation from equilibrium is assumed to 
and 9), that is, 

r 

lh 

be an expansion in powers of (refs. 8 

+ f(2)(E2) + . . . (14) 

The linearization of the BE is obtained from the assumption that only the first te rm 

which is also proportional to E, the condition of Ohm's law. The explicit form of the 
linearization is (refs. 8 and 9) 

f (1) (E) - of equation (14) is important. This assumption resul ts  in a transport current 

11 



-- 
The linearized Boltzmann equation for the function A(k) is 

The basic quantity describing the scattering is the positive, definite, symmetric - _  
kernel Q(k,k'). 
ator Q such that 

It will be convenient for the later discussion to define an integral oper- 

and a scalar function 

With the introduction of these quantities the Boltzmann equation may be written as 

.I-- - 
k q - Q ) + - ( v  e -  X H -  - V ) A ( k ) = v k  

k 
l i C  

The essence of the method of Taylor (refs. 8 and 9) is the use  of the operator q - Q 
to treat the scattering. No assumptions about the topology of the Fermi  surface or the 
details of the scattering processes a r e  needed for the solution of the BE. It has been 
shown by Taylor (refs. 8 and 9) that the operator q - Q possesses an inverse, as long 
as the scattering kernel is not a &function of k and k', and if the constant function is 
excluded from the range of the operator. Both conditions can be shown to  be satisfied 
for  all problems of interest. We define the differential-integral operator 

I 

im -1- A 

Ti 
T E - (q - Q) (vk * h x Vk) 

1 
i A A - 

where h is the unit vector in the direction of the magnetic field (i. e., H = Hh). Then, 1 
) 
I 

1 

operating on the left side of equation (19) by (q - Q)-' and defining the free-electron 
cyclotron frequency I 
12 



result  in 

-1- (1 - iwT)n = (q - Q) vk 

-- 
Equation (21) represents the Boltzmann equation for the function A&). If a solution 

can be found for x, then the transport properties of the system may be found from equa- 
tion (15) for the distribution function. For a system with no applied magnetic field (w = 0 
in eq. (21)) it was shown by Taylor (refs. 8 and 9) that there  exists a solution for in 
t e rms  of eigenfunctions of the operator q-lQ. 
tion (21) can be solved by forming the operator which is the inverse to l - iwT and op- 
erating on the left side. The inverse operator (1 - iwT)-' exists since T, although not 
Hermitian, possesses a real  eigenvalue spectrum (see appendix A). 
cannot be singular (ref. 33) and the inverse exists. The formal solution for then is 

For a nonzero magnetic field, equa- 

Hence, 1 - iwT 

The transport properties of the system, and in particular the conductivity tensor, 
may be determined by substitution of equation (22) into the distribution function (eq. (15)). 
The conductivity tensor, the quantity that describes the galvanomagnetic properties of 
the metal, is 

1 1 - afO 
V k ( l  - iwT)- (q - &)- Vk- 

a'k 
D = -e  

Equation (22) represents,  symbolically, an exact, closed-form solution to  the lin- 
earized Boltzmann equation. Thus, the conductivity tensor (eq. (23)) is an exact result, 
to within the linearization approximation, and is valid for any strength of the magnetic 
field. This generality should be contrasted with previous theories which were formu- 
lated to  describe either low-field o r  high-field behavior. No assumption about the nature 
of the Fermi surface has  been required, and the restriction to elastic scattering may be 
removed by the use of an  inelastic scattering operator P (refs. 8 and 9) ra ther  than the 
Q of equation (17). 

It is apparent that equations (22) and (23) a r e  not in a form suitable for computation. 
To get a useful form for the conductivity, the quantity of interest here, we must con- 
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sider the meaning of the two inverse operators in equation (22). It is shown in appendix A 
that the operator T, although not Hermitian, does possess a spectrum of real eigen- 
values and a corresponding complete set of (in general, complex) eigenfunctions. These 
eigenfunctions are referred to as the "magnetic scattering eigenfunctions" and form a 
complete set  for functions in k-space. These eigenvalues and eigenfunctions are defined 
by the equation 

or,  explicitly, 

It follows from equation (24) that Tb;= -7 b* so that the b* a r e  the eigenfunctions of 
T corresponding to negative T 

In both equations (22) and (23), the operator T ac ts  upon the zero-field mean f ree  
-1 - path (refs. 8 and 9) (q - Q) 

pansion can be written: 

1 2  2 
I?' 

vk. Since the 1 bz } form a complete set ,  the following ex- 

where v 
coefficients @ 
direction of the magnetic field, from the definition of T. 

of equation (25) is a rea l  function, for every t e rm P b pz z 
corresponding /3 b , guaranteeing the reality of the sum. 

written as 

is the pth Cartesian component of the velocity vector vk. The expansion 
A IJ- 

although they do not depend upon E, do depend upon the vector h, the 
Note that, since the left side 

PI' 

there  must also appear the * *  
P I  2 

With this expansion for the zero-field mean f r ee  path, the conductivity can be 

The presence of the energy derivative of the Fermi  function in the integral of equa- 
tion (26) leads to some discussion of the k-dependence of functions in this theory. Be- 
cause of the limit 

14 
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only states at the Fermi  surface can contribute to the integral in equation (26). The im- 
portance of this energy &function may be seen by consideration of a variable transfor- 
mation (ref. 7) from the volume element dk to an equivalent volume element 

where dS is the element of area on the energy shell corresponding to ek. This sep- 
aration of variables into energy and surface variables, combined with the 6(ck - cF) of 
equation (26), implies that only functions evaluated on the Fermi surface need be con- 
sidered. To simplify the notation in integrals, it is convenient to redefine the volume as 

where dQk stands for the surface integral and the multiplying factors in equation (27). 
After the integrations have been performed over the energy 6-function, all that remains 
is the integral over dQk, or simply dS2, which represents an integral over the Fermi 
surface. 

striction to elastic scattering. The transition probability Q(k, k') is defined for every 
k and z' in wave-vector space. The assumption of elastic scattering restr ic ts  atten- 
tion, for a given E, to  only those E' that lie on the same energy shell. Since every 1; 
is considered, the factoring of k-space into a nested set of constant-energy surfaces is 
a natural view. There is no further restriction implied by the condition of elastic scat- 
tering. The functions of interest, such as Q(k, k'), q&), and A&), a r e  defined off the 
Fermi energy surface. The discussion of the preceding paragraph is a low-temperature 
approximation; that is, if these functions a r e  slowly varying functions of energy near 
the Fermi  energy, then all  k-vectors may be restricted to the Fermi surface. 

After equation (26) the problem becomes the calculation of the field-orientation- 
dependent eigenfunctions bz@) and the expansion coefficients 6 It is apparent from 
equation (24) that the solution for  the { bz } involves an integrodifferential equation. 
tunately, the prospect is not as dismal as it first appears, for in equation (24) the inte- 
gra l  operator Q ac ts  upon the function bz. Thus, if the { bz } themselves could be ex- 
panded in t e r m s  of the eigenfunctions of q-lQ, the problem could be simplified. This 

It is important to make the connection between the preceding discussion and the re -  _ -  
- 

I - _  -- 

Pz-  
For- 
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simplification turns  out to be quite substantial and illuminating. 

and 9), showed that eigenfunctions of the non-Hermitian operator q- Q, 
Taylor, in his treatment of the magnetic-field-free Boltzmann e uation (refs. 8 i! 

could be defined. Appendix A includes a discussion of the properties of these scattering 
eigenfunctions, with their  existence and completeness properties. Among their  useful 
properties is the fact that they may be chosen to be orthonormal, so that 

I 

These scattering eigenfunctions a r e  real, and depend only upon the nature of the Fermi 
surface and the electronic scattering processes, independent of the magnetic field vec- 
tor .  

The magnetic scattering eigenfunctions may be  expanded in the an&) as follows: 

where the complex expansion coefficients yln depend implicitly upon the field direction 
h. With the aid of this expansion and the orthogonality condition of equation (29), the 
eigenvalue equation for the T~ becomes 

* 

n 

t Although this equation appears formidable, its t rue  nature can be seen by a definition of 
a new set of coefficients 

t 

and the vector quantity 

16 
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Thus, equation (31) has the form 

i . CrnrIn = 7 r I Ir (34) 
n 

This equation represents a set of simultaneous equations, in effect a secular equa- 
tion, for  the T ~ .  

ence upon the magnetic field is through the presence of h. The matrix c is determined 
completely from the field-independent scattering eigenfunctions an&). 

Hermitian and, in fact, purely imaginary. This implies that the eigenvalues T~ must 
be real. Also, since the t race  of must vanish for any field direction, the T~ must 
occur as positive-negative pairs; that is, the sum of the T I 

conductivity 

The important feature of this equation is the fact that the only depend- * 

- 
* 

It can be seen by an integration by parts of equation (33) that the matrix is 

must also vanish. 
The combination of equations (26) and (30) gives as an intermediate form for the 

where 

gvn = -/v v n  a 6) d!- d i  = /vvan&)d$2 
a'k 

The final reduction of the conductivity is motivated by the realization that equa- 
tion (25), the expansion of (q - Q)-'v, in t e rms  of the bl, is equivalent to  an expansion 
of the same quantity in t e rms  of the scattering eigenfunctions an@). This, in fact, was 

magnetic-field conductivity. This double expansion resul ts  in 

- 

r the procedure used originally (refs. 8 and 9) in the solution of the BE for the zero- 

I I n  

The an a r e  eigenfunctions of q-lQ, s o  operating on both sides of equation (37) with 
q - Q and using the orthogonality of the an result in 

17 
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with the g 
orthonormal set of vectors. The replacement of yzr ( l  - ar) 
tion (32), and the use of the orthogonality condition result  in an expression for  P 

defined as in equation (36). Since Ern is Hermitian, the 1r form an 
I.lr 1 /2  by rZr, as in equa- 

P I  

This result allows the final simplification of the expression for the conductivity. From 
equation (3 5), then, 

or 

It is not immediately apparent that either form €or the conductivity is closely akin 

to  the usual resul ts  (ref. 3) presented on the basis  of phenomenological arguments. Any 
detailed comparison would involve some specification of a model for the Fermi  surface 
and would not have the general validity of the preceding discussion. The desired com- 
parison may be helped by the recognition that the magnetic scattering eigenvalues T~ 

occur in positive-negative pairs. In fact, as may be verified from equations (33) 
and (34), if r,, is an eigenvector corresponding to  an eigenvalue T ~ ,  then I?,, is also 
an eigenvector with the associated eigenvalue -7 Thus, if the sum over I in equa- 
tion (39) is restricted to only include the positive values of T ~ ,  the final result  is 

t 

* (. 

I' 
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I r , n  

SYMMETRY PROPERTIES OF THE SCATTERING EIGENFUNCTIONS 

It was shown in the preceding section that a formal, closed-form solution to the 
linearized Boltzmann equation exists for all magnetic field strengths and orientations. 
It was also demonstrated that this solution could be obtained by using two eigenfunction 
expansions. 
lems must be formulated in t e r m s  of the electronic scattering processes and band 
structure. This places a limit upon the number of general observations which may be 
drawn from the formalism. Fortunately, a large amount of information about the scat- 
tering eigenfunctions (referring now to both eigenvalue problems) and the methods of 
computation may be obtained from the symmetry properties of the system. In this sec- 
tion the application of group theory to determining the properties of the scattering eigen- 
functions is discussed. 

For any application of these results to a real  metal these eigenvalue prob- 

The difference between a free-electron gas and the system of conduction electrons 
in an independent-particle model for a real metal is the anisotropy forced upon the con- 
duction electrons by the lattice of the ion cores in the metal. For many metals the most 
striking example of this anisotropy is the shape of the Fermi surface, the constant- 
energy surface which, at absolute zero,  defines the boundary between filled and unfilled 
electronic states in  k-space. For some metals, such as aluminum, the Fermi surface 
is very complex and is composed of several separate sheets; for copper, the Fermi 
surface is a single sheet but is distorted from the free-electron sphere sufficiently to 
touch the boundary of the Brillouin zone. This contact provides a path through k-space 

ground between these different cases is the influence the symmetry of the lattice has 
upon the electrons. The lattice has the symmetry properties of a specified point group, 
and the Fermi  surface also has the properties of the same point group, with respect t o  
rotations and rotatory inversions in reciprocal space. The properties of the conduction 
electrons must also be governed by this point group, and the scattering eigenfunctions 
may be  considered from this viewpoint. 

This group consists of some number g of rotations and possibly rotatory inversions, 

t 

+ for  electrons, giving rise to  the concept of an ??open" orbit for conduction. The common 

Consider a Fermi surface whose symmetry properties are those of a point group 9. 
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each operation symbolized by the operator g. This group has a number of irreducible 
representations which give a set  of finite matrices to represent the operations. If the 
ath irreducible representation of 9 has the dimension of na, then the matr ices  for 
this  irreducible representation are square and have dimension n 
ments are represented by the symbol D!?)(a). The effect of a group operation acting 
upon a function of 

and the matrix ele- a' 
u 

is defined by 

(40) 
-1- Sf&) = f(R k) 

Y 

where 9 is symbolic for the abstract group operator and R is the 3 x 3 matrix repre- 
sentation of k ). Y' = ,. which ac ts  upon the triplet of numbers &, k 

Since the scattering in the linearized approximation is independent of the magnetic - -  
field, the Q(k, k') must reflect the symmetry of the lattice point group. The only as- 
sumption about the scattering kernel which must be made is a weak restriction, particu- 
larly in view of the restrictions other authors (ref. 24) have made. Consider the scat- 
tering from a state 
space imposed by some external source, then this scattering process should be  identical 
to the scattering from Rk to rek', where E and Rk are equivalent points. The sense 
of equivalence here  is simply that the point Rk is obtained from the point k through 
one of the group operations 2P. Thus, for the group of order  g, a general point on the 
Fermi surface will have g distinct images under the group operations, including the 
identity operation. This equivalence assumption about the scattering kernel may be for- 
mally written as 

to (or from) a state E'. If there  are no preferred directions in 

- -  - 
for  all k and k' and all ~ F Y .  This assumption does not require that Q(k, k') be de- 
generate or that it only depend upon k - k' and, in fact, is a very weak restriction upon 
the form of the scattering kernel. The fact is, the use  of this assumption and the power- - 
ful tools of group representation theory allow interpretation and understanding of the 
scattering eigenvalue problem (eq. (28)). 

group representation theory is the concept of a basis function of an irreducible repre- 
sentation. The formal definition of a basis function is as follows: If the ath irreduc- 
ible representation of a group 9 has the dimension na7 then there  exist 
functions +r) such that, for any 9%' in 9, 

I 

For the purposes of the problems considered here,  the most important result  from + 

na basis 
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I To make the connection between the scattering eigenvalue problem and the basis 
function the following theorem is important: 

Theorem I: The integral operator Q of equation (22) commutes with all 9 of 9, that 
is, 

Proof: By the definition of Q, 
t 

9(Qf) = 9S&(i;,kT)f(i;')dS1' 
5 

= $&(R-'k, k')f@')dS2' from equation (40) 

= S Q G ,  Rkf)f@)dS1' from equation (41) 

-1 - but f6') = f(R 
due to the invariance of the Fermi surface. Thus, 

Rk') = af(6') and the energy of 6' is the same as the energy of k' 

All k vectors have been taken to  be vectors to the Fermi surface, to be consistent with 
the discussion of the preceding section. All integrals are taken over the Fermi surface. 
This assumption is not as restrictive as it appears, since the energy integral implies 
an integral over all the energy shells. Each constant-energy shell has the same sym- 
metry properties as the Fermi surface, and, thus, the generalization is immediate. 

Theorem I implies that there  is a connection between the scattering eigenfunctions 
of equation (28) and the set  of basis functions of the group representations. The estab- 
lishment of this connection, along with further implications, is the object of this section. 

Fredholm integral equation, a homogeneous equation of the second kind (ref. 22). It is 
a result  of a theorem in the theory of integral equations known as Mercer's theorem 
that, since Q(k, k') is a positive definite, continuous, symmetric kernel, there exists 
a biharmonic expansion for Q in t e rms  of its eigenfunctions (ref. 23). The translation of 
this theorem requires  a little groundwork. 

The spherical harmonic functions ym(e, cp)  form a complete orthonormal set of 
1 

functions for functions defined on the unit sphere. Another property of the spherical 

r 

b The scattering eigenvalue problem (eq. (28) or ,  in practice, eq. (Al)) is in reality a 

- _  
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harmonics, perhaps not so widely recognized, is that they are basis functions of the ro- 
tation group. The Yp obey an equation analogous to equation (42) (ref. 34) with Z 
labeling the irreducible representations and m denoting the partners of the basis. 
Since the Zth irreducible representation of the rotation group has dimension 21 + 1, 
there are 21 + 1 partners in a basis set, corresponding to the 21 + 1 values of m for 
a given Z in a spherical harmonic. 

Now consider a kernel Q(k, k'), where k and k' are vectors to  the unit sphere. 
If this kernel is restricted to  being spherically symmetric (i. e. , the function Q may 
depend only upon the difference 
of the spherical harmonics 

- -  

- I;( I), then there exists an expansion of Q in t e rms  

Z = O  m 

Note that the existence of this expansion does not imply that the kernel must be degen- 
erate, in which case the sum would have to  be finite. The implication in equation (44) is 
that the function Q is well approximated by the sum on the right side if a sufficiently 
large number of I-values a r e  included. 

which is restricted to having the symmetry of a finite point group, as specified by equa- 
tion (41). Obviously, the functions analogous to the spherical harmonics (i. e . ,  a com- 
plete, orthonormal set  of basis  functions of the point group 9') are required. 

symmetry-adapted functions, are sufficiently detailed in the l i terature (ref. 35) not to 
require an exhaustive treatment here. Given a group 9 (meaning that we have all the 
matrices of all the irreducible representations of g), consider one of the irreducible 
representations, labeled by a, which is of dimension nay. Since 9 is assumed to be 
a point group, it is a subgroup of the full rotation group, including inversions, if neces- 
sary. The representations of the rotation group are ,  in general, reducible with respect 
to 9. This means that the Zth representation of the rotation group may contain more 

th than one representation of 9. If the irreducible representation is contained in  the 2 
representation, then there  a r e  n linear combinations of Y y ,  summed over m, that 
a r e  basis functions for the a representation of 9. The set of all such linear com- 
binations, for all Z and all a of 9, form a complete orthonormal set  of functions. 

and tabulated as the Kubic harmonic functions (ref. 36). In principle, the same con- 
structions may be performed for each crystal  group (in particular, s ee  Altmann and 
Cracknell (ref. 37)) and all such tabulations could be kept as ready reference. How- 
ever, all that is required is the existence of such a complete orthonormal set  of func- 

The purpose is to find an expansion, similar to  equation (44), for a scattering kernel 

The existence and methods of obtaining such functions, known generally as 

a 

The symmetry-adapted functions for the full cubic group o h  have long been known 
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tions Xir indexed by the angular momentum of the contributing spherical harmonics 2,  
the label of the irreducible representation of 9 j ,  and the column (or the component) of 
the representation r. 

Consider a kernel function Q(k, k'), where k and k' are vectors to the Fermi  
surface, which is to be  invariant under the operations of a point group, as discussed 
ear l ier  in this section. Then there  exists an expansion for Q, analogous to equation (44), 
in t e r m s  of the symmetry-adapted functions. This expansion is the content of theorem II, 
as follows: 

Theorem II: Given a function Q(k, k') which is invariant under all operations 42 of a 
group 9 (i. e. , Q(k, k') = Q(Rk, FW) for all J in 9), then there  exists the expansion 

- -  

( - -  
_ -  - -  

9 

The proof of this theorem is straightforward, but not instructive for the purposes of this 
report, and so  it is given in appendix B. The important fact to  note is that equation (45) 
does not represent a treatment of the scattering by a degenerate kernel, since the sums 
of I and I' a r e  infinite. Equation (45) does however, indicate, simplifications which 
a r i s e  if the kernel is degenerate. Further evidence of this point appears in the section 
DEGENERATE KERNEL THEORY. 

The groundwork is now laid to make the connection with theorem I. It is apparent 
that the eigenfunctions of the scattering operator must be related to  symmetry-adapted 
functions. This connection is provided by the content of theorem III: 

Theorem 111: A function yr@) is a basis function for the group 9; that is, it satisfies 
the equation 

J 

r 

if and only if I- 

r' 

The proof of this theorem is also given in appendix B, since it is merely an exercise in 
group representation theory. Equation (46) is the same as equation (42), although the 
notation has been changed to  make the following discussion smoother. 
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Now that the connection between the symmetry-adapted functions and the scattering 
kernel has been established, the scattering eigenvalue problem may be reformulated. 
Since any kernel Q may be expanded as in equation (45), the  modified scattering kernel 
of equation (Al) of appendix A clearly has such an expansion. It is shown in appendix B 
that the function q&) is a scalar with respect to the group operations, so that the modi- 
fied scattering kernel has the same symmetry properties as the original kernel Q(k, k'). 
Formally then, 

- -  

v 

The relation between the basis functions yr and the symmetry-adapted functions Xjr 
(eq. (47)) is used to derive a secular equation for the scattering eigenvalues cy, as in 
equation (Al),  

j 

A consequence of theorem 11, as shown in appendix B for real, symmetric kernels, is 
that the matrix of expansion coefficients A must be Hermitian. Thus, the scattering 
eigenvalues, the roots of equation (49), must be real, confirming the results of appen- 
dix A; and the vectors of the expansion coefficients, the bI, must either be automati- 
cally orthogonal (for distinct eigenvalues), or e lse  be constructed t o  be orthogonal (for 
degenerate eigenvectors). Since the scattering eigenfunctions, labeled by ar according 
t o  the notation of equations (47) and (28), are related to  the eigenfunctions of equation (48) 
through the scalar  function m, the transformation properties of the two functions 
will be the same. 

the structure of the matrix A of equation (48). This coefficient matrix connects only 
symmetry functions which belong to the same irreducible representation of the group. 
In this sense, A is a diagonal block matrix of block dimension g and each block, in- 
dividually Hermitian, is indexed by its irreducible representation. Each block will be 
of infinite dimension if the kernel is not degenerate and its eigenvalues are the scattering 
eigenvalues. Each scattering eigenvalue must ca r ry  two indices, one corresponding to 
the irreducible representation and one corresponding to an ordinal number within its 
block. There is one complication which is partially hidden in this indexing. If the cy 

irreducible representation of 9 has the dimension no, then each eigenvalue corre- 

3 

9 The meaning of the notation and the scattering eigenvalues can be seen by looking at 

6 
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sponding to  the block a must be na-fold degenerate, corresponding to the n 
of the set  of basis functions. 

The possibility of providing an indexing and a characterization of the symmetry 
properties of the scattering eigenfunctions allows an insight into the meaning and struc- 
tu re  of the formal equations derived in the preceding section. The fact that it also pro- 
vides an aid in the numerical treatment of the problem will be considered in the next 
section. For the t ime being, consider two major steps in the formalism, the formation 
of the 2-matrix,  (eq. (33)) and the definition of the gun factors of equation (36). Use of 
the tools of group representation theory allows some strong statements to be made con- 
cerning these equations. 

First, consider the definition of the gvn, but with the indexing of the scattering 
eigenfunctions indicated explicitly 

partners a 

I 

8 

The indices r and n on a refer  to the column of the representation and the ordinal 
number of the eigenvalue, respectively. The index 1 on the g is meant to include 
schematically all possible indices from the a. For convenience, let us  consider the 
full cubic group Oh of order 48 with 10 distinct irreducible representations, having 
dimensions from 1 to 3. The velocity vector ik will have specified transformation 
properties for this group; in fact, ik transforms according to the r15 irreducible 
representation (ref. 38). The selection rule  for the integral in equation (50) may be ob- 
tained from one of two approaches. Either the integral is formally evaluated by sum- 
ming over the contributions of the 48 equivalent zones of the Fermi  surface, or else the 
content of the Kronecker product 96) C9.9 (a.) is examined for a scalar part. 
script  9 is used to symbolize the irreducible representation of the indicated quantities. 
The former approach is used in the following section, but the latter is more useful for 
the investigation of the selection rules. 

in equation (50) will vanish unless there  is some part of the integrand which is a scalar 
under the group operations. Since, for Oh, vk is known to transform as r15, all that 
is necessary is to  scan a table of Kronecker products of r15 with all irreducible rep- 
resentations of o h  to discover the fact that only r15@ r15 contains the identity rl. 
Even further, the integral will vanish for a scattering eigenfunction which is r15 unless 
the column index of the function is the same as the column index of the velocity (i. e . ,  the 
component of vk). Thus, 

The 
J 

? The appropriate guide to  use is the result  (ref. 39) that an integral of the type shown 

- 
v 
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By the same token, the selection rules for the formation of the &matrix (eq. (36)) , 
cnll by obtained by looking at a triple Kronecker product of representations. 
not be striking since 
nloiiientuni operator vk X V taken with respect to the scattering eigenfunctions. This is 
a familiar problem in nuclear physics, and its solution is the set  of Racah coefficients 
for the scalar content of the triple product. 

In the full cubic group the angular momentum transforms as the I'i5 irreducible 
representation and thus has even parity under inversions. A table of the tr iple product 
of ri5 with all the irreducible representations will show which products contain the 
identity representation. Conversely, for the products which do not contain the identity, 
the matrix element of must vanish. Even without such a product table, the angular 

product must then have odd parity under inversion. Thus, the only contribution to the 
gross transport properties arises from the part of the scattering kernel which has odd 
parity,  because of the nature of the gV1. The qualification implied here  is necessary, 
since the effective anisotropic relaxation t ime q 
of Q(k, k') and determines the scale for the system. 

of electrons in a metal should be apparent at this point. The representation theory of 
finite groups provides powerful tools for the understanding of the formalism discussed 
in the preceding section. The validity of an even stronger statement, that the use of 
group theory is essential for the numerical description of the galvanomagnetic properties 
of a real  metal, is discussed in the next section. 

This should 
is really the matrix of the matrix elements of a crystal  angular 

9 

momentum cannot have matrix elements between states of different parity, since the #I 

-1 -- 
(k) is determined from the scalar part 

The importance of the symmetry properties in determining the transport  properties 

STRUCTURE OF THE CALCULATIONS 

The desired product of this investigation is a computational procedure capable of 
giving the galvanomagnetic properties of any metal. Equations (38) or  (39) describe the 

implementation of this formalism to a rea l  metal involves a number of computational 
problems, which are considered in this section. 

surface construction and the scattering model. When a galvanomagnetic experiment is 
used as a topological probe of a Fermi surface, such as that of copper (ref. 40), the 
details of the scattering model a r e  not as important as an accurate construction of the 
Fermi surface and velocity vectors. On the other hand, as mentioned in the introduc- 
tion, galvanomagnetic experiments have been supplanted, for the most part, by other 
types of experiments for  topological investigations. The ability t o  investigate the effect 

conductivity of a metal, on the basis of an exact solution of the Boltzmann equation. The % 

't' 
There a r e  two primary areas for comparison with experimental results, the Fermi  
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of different scattering models upon the galvanomagnetic properties of metals becomes a 
more important role. The input information to a calculation consists of a construction 
of the Fermi  surface cF&), the Fermi  velocity vF&), and the scattering model 
a&, E'). 

The calculation in which equation (38) is evaluated may be divided into two distinct 
parts. It should be apparent from the discussion of the section SOLUTION OF THE 
BOLTZMAN EQUATION that the magnetic field plays no essential role  in the theory until 
the determination of the magnetic scattering eigenvalues and eigenfunctions T~ and bz 
is desired. The computations then may be  classified as field-free or field-dependent. 
In the remainder of this section, the numerical procedures used to  implement the theory 
a r e  described in sequence. 

The computation that requires the most time and accuracy is the solution of equa- 
tion (38) for the scattering eigenvalues and eigenfunctions. Even when the scattering is 
limited to  Fermi  surface states, as assumed herein, the numerical problem is imposing. 
Equation (38), or, more properly, equation (Al), is a homogeneous Fredholm integral 
equation. Standard iterative procedures exist for the solution of such equations 
(ref. 22). The recognition that standard techniques are available for a solution does not 
reduce the magnitude of the numerical problem. 
mesh having a 5' separation between points would _ _  require approximately 2500 points. A 
complete knowledge of the scattering kernel Q(k, k'), with no simplifications from the 
symmetry, would then require (2500) values to  be stored. It is obvious that this is a 
number larger than the fast-access storage of any computer now in use. Fortunately, 
the properties of the covering point group allow drastic simplifications in the problem. 

Let u s  consider, where possible, the specific example of the full cubic group 
ordre  48. 
surface is necessary to completely determine the entire surface. 
a set of basis functions for an irreducible representation of Oh need be specified only 
in one forty-eighth of the surface in order to compute the functions over the entire sur- 
face. 
basis functions of the irreducible representations of the reciprocal lattice point group. 
The degeneracy of an eigenfunction is the same as the dimension of the pertinent i r re -  
ducible representation. This prior knowledge of the symmetry properties of the scat- 
tering eigenfunctions allows the scattering eigenvalue problem to be reduced to  a prob- 
lem over one forty-eighth of the Fermi surface. 
tion (Al) Yy(k),  which transforms as the ith column of the 
of Oh. The matrices of I? have the dimension nr so that the eigenvalue correspond- 
ing to  this eigenfunction is +-fold degenerate. Rather than iterating equation (1) over 
the entire Fermi surface t o  obtain each eigenfunction, it is only necessary to  note that 
Y k  is the solution to the reduced scattering problem 

J 

1 

To cover the Fermi  surface with a 

2 

of 
Since there  a r e  48 elements in the group, only one forty-eighth of the Fermi 

By the same token, 

It was shown previously that the eigenfunctions of equation (Al) transform as 
T 

1 

Consider the eigenfunction of equa- 
i -  irreducible representation 
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r n 

The integral in equation (52) is over all kf within one forty-eighth of the Fermi  surface, 
the irreducible zone (IZ); and the kernel 9. .(k, k') is an nr X nr matrix defined as 

J1 

r - -  

Equation (52) is an  integral equation that is equivalent t o  equation (Al), with k and k' 
restricted t o  lie within the IZ. Interation of equation (52) gives the scattering eigen- 
values and eigenfunctions. 

the problem should be apparent. The convenient choice of 66 points in the IZ ,  equivalent 
t o  over 3000 points on the entire surface, entails the storage of (nr)2 x (66) 
9.. rather than (3000) values of Q. Since the time to  perform one iteration is pro- 
portional to  the square of the number of mesh points, this reduction to  the I Z  also pro- 
vides a substantial savings in computer time. 

The method of solution chosen is known as Mellogg's method (ref. 22). An initial 
choice for  the set  of functions 
The eigenvalue is approximated by the ratio of the norms of successive iterates. Once 
satisfactory convergence t o  an eigenvalue has been obtained, a process which takes rel- 
atively few iterations, the content of the kernel due to  this eigenvalue (ref. 22) is sub- 
tracted from the kernel. The iterative process then is restarted. One feature of this 
method is the use  of a pseudorandom number generator to provide the initial set of func- 
tions. This choice eliminates the possibility of a trial function that is accidentally or- 
thogonal to  the eigenfunctions of a reduced kernel. 

Once the scattering eigenvalues and eigenfunctions have been obtained, the next step 
is the calculation of the matrix (more properly, the set of three matrices which have 
been symbolized by the vector notation for z) defined by equation (33). As discussed in 
the preceding section, the selection rules  for the formation of the matrix elements of ?? 
are obtainable from the content of the tr iple Kronecker product of the irreducible rep- 
resentations participating. One aspect of this observation was that equation (52) need 
only be  solved for the eigenfunctions which have odd parity under inversion, since only 
these functions can give any contribution t o  the transport properties. 

The savings in time and storage locations that are allowed by this reformulation of 

values of 2 
2 

4 

Yr is iterated by means of the integral in equation (52). I i 1  

d 
1 1 

I. 
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The only numerical problem involved in the construction of the ?? matrices (still a 
field-free problem) l ies in the formation of the gradients of the scattering eigenfunctions. 
Numerical differentiation by some type of finite-difference method is a very inaccurate 
process on a computer. T o  avoid this  inaccuracy, the scattering eigenfunctions a r e  ap- 
proximated by the formation of interpolation polynomials formed from the appropriate 
Kubic harmonics (the symmetry-adapted functions for the cubic group). Since the inter- 
polation polynomials may be differentiated analytically, the finite-difference method is 
not necessary. Thus, once the factors of the integrand of equation (33) are known, it 
only remains t o  either perform the integrals numerically for all possible products al- 
lowed by the selection rules,  or else use  a table of Racah coefficients for the point group 
to  form the scalar par ts  of the integrands, with the number of numerical integrations 
being correspondingly reduced. 

numerical procedures involved are the most time- and storage-consuming of the entire 
problem. The important point to remember is that these calculations need be done only 
once for a given Fermi  surface and scattering model. Once a Fermi surface construc- 
tion is made and a scattering model formulated, the scattering eigenvalue problem can 
be solved and the 
of information is available for use. That such a division of labor exists is clearly a re -  
sult of the linearization procedure used to  simplify the Boltzmann equation. In this ap- 
proximation, the scattering te rm is independent of the electric and magnetic fields. To 
proceed to the next order in the Boltzmann equation would certainly introduce substantial 
difficulties. 

The preceding discussion covers the field-free portion of the calculations. The 

matrix and the gyn factors calculated, and a very large amount 

The remainder of the calculation, the field-dependent part, presents no essential 
A 

problem and requires no major computational effort. Once a field direction h had been 
chosen, the scalar product of h with the -d matrix results in a purely imaginary 
Hermitian matrix which must be diagonalized. For convenience this resultant matrix is 
treated as a real ,  antisymmetric matrix; the imaginary parts of the resulting eigen- 
values a r e  the (real) eigenvalues of h - C .  The use of a real  matrix is prompted by the 
existence of excellent methods to  obtain the eigenvalues and eigenvectors. These pro- 
cedures have not as yet been extended to the case of complex matrices. The eigenvalues 
a r e  obtained by a QR transformation of h - C (refs. 41 to 43). The eigenvectors of the 
matrix are calculated from the Wielandt inverse iteration, as described by Wilkinson 

(ref. 43). 
eigenvectors of a general, r ea l  matrix. 

the conductivity tensor, and its inversion to  obtain the resistivity, as a function of mag- 
net ic field strength. 

A 

A -  

A -  

These methods provide fast and accurate computations of the eigenvalues and 

The remaining portion of the field-dependent calculation is the final evaluation of 
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Z m  

where the Y F  a r e  the normalized spherical harmonic functions. 
The integrals over E-space may be transformed into integrals over the angles €J 

and cp by the following considerations. The original definition of the volume element 
was 

2 2  From a transformation to spherical coordinates and the fact that E = €=i k /2m, 

where dS = sin 0 de dq.  Since each k is restricted t o  the Fermi  surface, the energy 
integration may be performed. Thus, 

The scattering eigenvalue problem is solved with the aid of the orthogonality condi- 
tion of the spherical harmonics, 

The integration over the energy that is implicit in the operation QYm may be done 
immediately, from the preceding discussion, and thus, 

I 
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QYF = Q(k, k')Y?(k')dn' = - V - mkF s - -  pn13 h2 

where the point k has coordinates (kF,e, q). Then, also 

cO q(k) =- - - v  mkF 

(2n)3  h2 

Thus, the scattering eigenvalue problem has the immediate solution 

with a2 = C2/Co. Each eigenvalue a 1 
22 + 1 functions for  each 1. The Zth irreducible representation of the rotation 
group has matr ices  of dimension 21 + 1 and the Ym are the basis functions for the 
irreducible representation. The degeneracy of the scattering eigenvalues is due to  the 
rotational symmetry of the scattering kernel, in the same manner as indicated for the 
point groups in the section SYMMETRY PROPERTIES OF THE SCATTERING EIGEN- 
FUNCTIONS. 

is (22 + 1)-fold degenerate, corresponding to  the 

2 

The usefulness of this example lies primarily in the fact that the magnetic scattering 
eigenvalue problem can be solved analytically. The definition of the magnetic scattering 
problem was, from equation (24) 

Fk X V)b&) = T(q - Q)b&) (58) 
h 

The operator Q commutes with the total angular momentum operator, and the t e rm 

im(vk 
Thus, the operator T commutes with the total angular momentum, implying that the 
functions b are indexed by 1. Further consideration shows that the magnetic eigen- 
functions are simply the spherical harmonics Ym 
spherical coordinates (kF7 8, @), with the new polar axis along the direction of h, re- 
sults in the following simple form for equation (58): 

A - 
i; X V) is simply the component of the angular momentum in the direction of h. 

Transforming t o  a new set of I '  A 

db 

d@ 
i A= 7(q - Q)bl 
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The new functions YP(0 ,  (a) are linear combinations of the YP(0,  q) with the same 
I-value. Thus Y y ( 0 ,  +) is an eigenfunction of Q and 

The relation between the scattering eigenvalue problem and the magnetic scattering 
problem is clear. The presence of the vector h in the operator T removes the azi- 
muthal degeneracy present in the scattering eigenfunctions. 

by using equation (26) for the conductivity. Although it is not necessary, it is illumi- 
nating to  proceed with the calculation of the matrix. Because of the simple form of 
T in an h-fixed set of polar coordinates, it is easier to compute the matrix h - C di- 
rectly. From equation (33), 

A 

Now that the magnetic eigenfunctions have been found analytically, we could proceed 

4 A -  

where the symbol S has been used for (e ,  q). Again, in t e r m s  of the variables (0, +), 
the quantity (m/ii)(h - Vk x 0) is simply d/d+. The transformation from the spherical 
harmonics Yp(S) to the new coordinate system, resulting in YI (0, +), is obtained 
f rom the fact that the Y p  a r e  basis  functions for the irreducible representations of the 
rotation group. Thus, from reference 34, 

* 

m 

Yp(S) = Yp'(0,  +)DEm,& 

a relation that is considered in more detail later in this section. Finally, we have 

M 
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The major difference between the present example and the discussion of the section 
SYMMETRY PROPERTIES OF THE SCATTERING EIGENFUNCTIONS arises from the 
fact that different irreducible representations of the rotation group a r e  not coupled in 
h * e; the matrix is block diagonal in I .  The symmetry breaking provided by the re- 
striction to be a point group makes the structure of h a C more complicated. 

a r e  

+- 

+ - -  

Summarizing the magnetic scattering eigenvalue problem, the magnetic eigenvalues 

and the corresponding eigenfunctions are 

bIm&) = YY(0,  +) = 2 Y,"(s)D$)ml(h) 
m' 

A comparison of equation (63) with equation (30) shows the correspondence between 
DL",  and Yln. 

The conductivity tensor is obtained from equation (26), with a factor of 2 included to 
count both spin states, 

where 

Im 

to  make the correspondence with equation (25). In the case of a spherical surface the 
velocity vector is everywhere radial, and 

+- 

mv = h k  =fik k 
EL EL FEL 
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A * * 
defining the unit radius vector k, with components k The k have the property that 
they a r e  linear combinations of only I = 1 spherical harmonics. Thus, in both equa- 
tions (64) and (65), the summations over I are restr ic ted t o  the t e r m s  for I = l. The 
final form for the conductivity is 

P'  P 

The factor in equation (66) that plays a role  similar to  the gvn of equation (36) is 
the integral 

Ivm =/ivblm(O, +)sin 0 de dcp 

with blm given in t e r m s  of the Yy(S) by equation (63). In order  to evaluate these in- 
tegrals, a specific representation for the D-matrix must be  chosen. The D is the 
3 x 3 (for I = 1) rotation matrix that describes the rotation from the fixed coordinate 
system to  the h-fixed coordinate system. By convention, this is a rotation matrix for 
the Euler angles (+,e, -+), and the form of D is (ref. 34) 

4. 

34 

-.. . -  . . . ._ .. 

i+ cos 0 - i+ 

- 1 (1 - cos @)e -2i+ 
2 fi 2 

- -sinOe 1 -i+ - 1 (1 -I- cos 0) 

I .  



With this form for D, the P l m  and the integrals Ivm may be  evaluated. The results 
a r e  

I-1 

and 

The magnetic scattering eigenvalues for 2 = 1 a r e  obtained from equation (60) and, with 
the definition 7-l = q(l  - al), are 

The conductivity may be evaluated directly, but the form of u itself is not of much in- 
terest .  For example, from equation (66) the zz-component of cr is 
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where 

is the density of electrons in the metal. 
The more interesting result  the quantity that would be measured experimentally, is 

the resistivity tensor p = (5 -i )vp. With the definitions of y = UT and p m/ne 2 T, V P  0 =  
the resistivity tensor is 

- y  cos 0 y s i n 0  sin qi 

1 -y sin 0 cos + 

I 
L-y sin sin + y s i n e  cos + 1 

This result is the familiar free-electron result, with the difference that the coordinate 
system has been rotated to axes in which the magnetic field is in the direction (0, +). 

If the model of a spherical Fermi surface is to have any validity for the alkali 
metals, in particular potassium, it is clear that a spherically symmetric scattering 
model is not sufficient t o  explain the experimental resul ts  (ref. 44). One possible model 
for  the scattering, the degenerate kernel model, is the subject of the next section. 

DEGENERATE KERNEL THEORY 

The Boltzmann equation (BE) provides the framework for the description of those 
transport properties of metals that do not arise from strictly quantum-mechanical ef- 
fects such as the Landau level quantization. The nature of the BE, an integrodifferential 
equation for  the distribution function, has always hampered attempts to provide calcula- 
tions for  any but the simplest models for metals. The difficult part of any calculation 
has always been the manner in which the scattering t e rm of the BE has been treated. 
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The relaxation-time approximation (the assumption of either a constant or a scalar func- 
tion of wave number to replace the effect of the scattering) has been the most common 
approximation. This achieves the desired reduction of the BE, but at the cost of aver- 
aging the scattering over all states. Thus, the knowledge about the relation between the 
topology of the Fermi  surface and the galvanomagnetic properties of the metal has been 
gained at the expense of an understanding of the electron's interaction with its environ- 
ment in the metal. 

manner by making the ad hoc assumption that the kernel, Q(k, k') of equation (18), is de- 
generate. Written explicitly, this assumption is that 

Sondheimer (ref. 21) formulated a way to  treat the scattering in a more complete - -  

where {qi} is a set  of N arbi t rary functions of integrable square (ref. 24). The impetus 
for this assumption is the existence of well-documented methods of treating Fsedholni 
integral equations having degenerate kernels (ref. 22). Since the summation in equa- 
tion (67) is over a finite number of terms,  the integral equation reduces to a set  of linear 
equations. 

The approximation of the scattering kernel by a degenerate kernel may be partly 
justified as a scattering model. 
Mann (refs. 2 5  to 27) has demonstrated thak, for an electron gas that interacts with a 
static system of impurities, the transition probability for scattering could be written as 
in equation (67), where the {qi} a r e  Wannier functions for the electrons. 
by Mann (ref. 27) and Seeger et al. (ref. 45) discusses the transport properties of such 
a system a s  a model for a metal, but as yet no treatment for the galvanornagnetic prop- 
er t ies  of the model has  appeared. 

surface and a simple degenerate kernel a r e  discussed. This discussion serves  three 
functions. First, an inconsistency in the Jones and Sondheimer calculation (ref. 24) is 
examined and its origin in the arbi t rary truncation of the degenerate kernel is demon- 
strated. Second, the natural representation provided by the symmetry-adapted functions 
becomes even more apparent when applied to a degenerate kernel. 
calculations show the strong effect upon the galvanomagnetic properties for a simple an- 
isotropic scattering model, for even a spherical Fermi surface. 

It should be apparent from the discussion of scattering eigenfunctions, and in parti- 
cular the appearance of equation (45), that the degenerate kernel theory has even wider 
applicability than has been realized previously. With the assumption of the symmetry 

Further, the basis functions qi a r e  not arbitrary.  

Further work 

In this section the galvanomagentic properties that result  from a spherical Fermi 

Last, the sample 
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of the kernel with respect 

there  exists a biharmonic 

to the point group operations, that is, 

Q(Rk, Rk') = Q(k, k') 
_- _- 

expansion of the function Q in the symmetry-adapted func- 
tions. If this expansion is truncated after N terms,  then the result  is equivalent to 
equation (67). The advantage of this formulation is that the integrals of the symmetry- 
adapted functions may easily be  calculated from the representation theory of the point 
group, as has been demonstrated here. The main disadvantage of working with a degen- 
e ra te  kernel l ies  in the uncertain relation between the postulated kernel and the actual 
scattering processes. To make this connection satisfactorily requires the calculation 
of Q(k, k') from an interaction Hamiltonian, and then the use  of the orthogonality prop- 
er t ies  of the symmetry-adapted functions to  invert equation (45) for the expansion coeffi- 
cients 
labor that is unnecessary in view of the present formalism which only requires the func- 
tion Q. 

To return again to the work of Jones and Sondheimer, the use of the {si} as basis 
functions allows a solution to the linearized BE €or the conductivity and, hence, the re -  
sistivity. Since the basis  functions are unspecified, the resulting expressions are for- 
mal  in nature, equivalent t o  equation (23). To  make possible a comparison between the 
resul ts  of reference 24 and the present work, consider the model consisting of a spheri- 
cal Fermi  surface and the scattering kernel 

- -  

This inversion adds a substantial amount of labor to  the computations - 

+ a4(k: + kL4) + b4k;kL2 + ~ ~ ( k , k b , ~  + k3 Q C Y  k' ) 

+ e4k,kpkLk& (68) 
CY .fp 

as given by equation (3. 4) 
must be chosen consistent 

of reference 24. The constants 
with the requirements that Q<k, k') be  normalized and 

positive-definite for all k and k'. In t e rms  of these partially adjustable parameters, 
Jones and Sondheimer show in their figures 1 to 3 (ref. 24) the variation of the longitu- 
dinal magnetoresistance as the magnetic field var ies  from (100) to (111). 
portant than the quantitative results is the observation that the behavior is not that of a 
free-electron gas. There is a nonzero longitudinal magnetoresistance that initially in- 
c reases  but saturates as the magnetic field becomes large. Thus, a reasonably simple 
anisotropy in the scattering kernel produces a marked effect in the galvanomagnetic 
properties, even for spherical Fermi surfaces. 

More im- 

38 



Rather than simply taking the kernel of equation (68) with some coefficients chosen 
for comparison with those of reference 24, consider in a little more detail the problems 
involved in working with a degenerate kernel. This  is done by using equation (68) as a 
working example. It is easily seen that most of equation (68) is extraneous. Jones and 
Sondheimer show that only that part of Q which is odd under coordinate inversion can 
contribute to  the transport  current. They use  this  property to eliminate the problem 
of the singularity that is in the operator q - Q. This report  shows that a condition 
stronger than the parity requirement may be formulated. Of all the irreducible repre- 
sentations contained in Q, only those which are not excluded by the Kronecker product 
selection rules for the formation of the matrix need be  considered. Since, for the 
cubic group, this excludes all irreducible representations with even parity, the condi- 
tion of Jones and Sondheimer (ref. 24) is included. 

Al l  these observations may be illustrated by considering as an example the kernel 

Z'=l, 3 

- -_ 
The constant te rm serves  only to normalize /JQO(, k')dk dk' and is not important 
otherwise. The function q&), obtained by integrating equation (69) over dk' is simply 
1/4~r.  This kernel differs from equation (68) in two respects, one minor and one quite 
substantial. The quartic factors multiplying a4 and b4 of equation (68) give integrals 
that do not vanish when q&) is formed. This  minor inconvenience is due to the use  of 
nonorthogonal basis functions. This restriction of attention to a constant q(k) is of only 
minor consequence. The major difference can be seen by a consideration of the cr i ter ia  
for the choice of the coefficients, in both equations (68) and (69). The condition that 
must be satisfied, once the form of Q is chosen to  satisfy the group symmetry require- 
ments, is that Q must be positive-definite. In the Jones and Sondheimer discussion 
(ref. 24) of the degenerate kernel, this meant the evaluation of Q for sufficient values 
of k and c1 to give inequalities that must be  satisfied by the coefficients. 
implies that the scattering eigenvalues a r e  obtained from a secular determinant of the 
All ,  of equation (69). 

Q&,G')/iq(k)q(k') is a constant multiplier, so that eq. (69) also represents the reduced 
kernel. ) 

sentaions for the Kubic harmonics a r e  used), the secular equation is 

- 

Equation (49) 

(The difference between Q and the reduced kernel 

Explicity, since the matrix A is Hermitian (real symmetric when the real  repre- 
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At this point, the major distinction between the two kernels (eqs. (68) and (69)) is ap- 
parent. The coefficients of A33, arising from 2 = 3 spherical harmonics, are of the 
sixth degree in k and k'. The Jones and Sondheimer kernel was truncated to  include 
t e rms  only to  the fourth degree. This omission of the A33 t e rm from equation (68) has 
interesting consequences, since it implies that the scattering operator cannot be positive- 
definite. This observation may be made from equation (70) by setting A33 = 0 and, 
thus, for any nonzero All  and .Al3 there  is one root that must be negative. Since a 
necessary and sufficient condition for  an operator to be positive-definite includes the re-  
quirement that all eigenvalues be positive (ref. 23), the truncation of the ser ies  must 
be performed carefully. 

scattering kernel of the form given by equation (69) are easily calculated with the present 
formalism. This discussion is not meant to provide a comparison with any experiment, 
but, rather,  is an investigation of the properties of a simple scattering kernel. The 
method that was chosen to accomplish this investigation was to choose a value for All 
and A33 (in this case the values chosen were 0.5 and 0.25, respectively) and to deter- 
mine the range of A13 that gave positive, nonzero eigenvalues a. 
equation ("0) for the eigenvalues and the eigenvectors, providing the appropriate coeffi- 
cients for  the linear combinations of the X1 and X3 to  form the scattering eigenfunc- 
tions, then provides sufficient information to  compute the resistivity tensor as a func- 
tion of the magnetic field strength and orientation. 

A convenient way to present th.e resul ts  of the computations is to define a quantity 
that parametrizes the strength of the mixing t e rm AI3. 
ratio of the off-diagonal part to  the Euclidean norm of the matrix 

The galvanomagnetic properties of a system with a spherical Fermi  surface and a 

The solution of 

One such parameter is the 

The coefficients a r e  then normalized to  give a unit norm, so that the quantity A I 3  is 
itself the desired anisotropy parameter. The components of the resistivity tensor that 
are of interest a r e  the longitudinal resistance pzz, the Hall resistance p 
average t ransverse resistance ptr = &om + pyy)/2. These quantities a r e  calculated for 
different values of AI3,  as functions of H, and for different field orientations h. 

and the 
XY' 

* 
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The values chosen are intended to  be representative of both a weak-scattering case 
(A13 = 0.06275) and a strong-scattering case (A13 = 0.26726). This  characterization of 
"weak" and l'strongll is justified by the extreme dependence of the saturation magneto- 
resistance values upon the anisotropy parameter. The constant q-l is used as an ef- 
fective relaxation t ime Teff: o r  simply T, in agreement with the usual experimental 
convention. Figures l(a) and 2(a) show the change in longitudinal and t ransverse re- 
sistance as a function of UT, for fields in the two symmetry directions, (100) and 
(111). Figures l(b) and 2(b) give the Hall resistance p 
(dp /d(WT)), for the applied field along the (111) direction. The pairs of curves for 
each value of A13 are qualitatively the same, but the scale has  been changed for the 
larger  A13, demonstrating the strong dependence upon the scattering. The magnetore- 
sistance curves show the initial rise (probably quadratic) and ultimate saturation that 
are expected for a spherical Fe rmi  surface model (ref. 3). The Hall properties reflect 
this low-field behavior. Although the Hall resistance p 

XY 
there is a small  region near H = 0 that shows a nonlinear behavior. 
by the variation of the Hall constant in figures l(b) and 2(b). The primary difference 
between the two scattering cases  lies in the scale of the effects. As the off-diagonal 
part, A13, increases, the nonlinear behavior near the origin becomes more pronounced, 
saturation of the magnetoresistance requires a larger field, and the value of the satura- 
tion magnetoresistance increases quite markedly. 

variation in the saturation values of pzz and ptr as a function of field orientation 
around the triangle (( loo) ,  (111), ( l lO),  (100)). 

to be  a serious model for a metal, the discussion of the present section shows some 
points that bear emphasizing. There  is a great deal of information contained in the 
field-independent quantities c and gvn. The evaluation of all components of the re- 
sistivity tensor as a function of field strength and orientation is a simple task, and the 
amount of information that can be  obtained about the galvanomagnetic properties of the 
system should be apparent at this point. This complete description of the p tensor 
must be compared with previous calculations (ref. 24) that must, perforce, concentrate 
upon only one component. 

simple scattering model upon the galvanomagnetic properties of an electronic system 
with a spherical Fe rmi  surface. Even the simple model discussed here  gives resul ts  
markedly different from free-electron behavior. This simplified model is not suggested 
as a realistic model for potassium, the metal it might be  thought most nearly to  repre- 
sent. On the other hand, the discussion of even this simple model demonstrates the 
power and usefulness of a method capable of treating the electron scattering. 

and the Hall constant 
XY 

XY 

is predominantly linear, 
This is indicated 

To  complete the discussion of this scattering model, figures 3(a) and (b) show the 

Although the simplified, degenerate kernel model discussed is much too simplified 

In summary, the degenerate kernal model clearly demonstrates the effect of a 
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CONCLUSION S 

The independent-particle model for  conduction electrons in metals and the Boltzmann 
equation have provided a great deal of information about conduction processes in metals. 
Such diverse effects as magnetoresistance, cyclotron resonance, and magneto-acoustic 
attenuation (among many others) have been explained, at least qualitatively, with the 
semiclassical theory (refs. 3 and 16). Even the descriptions of quantum-mechanical 
effects, such as the de Haas - van Alphen effect, have used the concepts provided by the 
semiclassical theory as a basis  (ref. 2). The current state of experiments on metals 
indicates that the qualitative description provided by the relaxation-time approximation 
is no longer sufficient. 

If galvanomagnetic experiments a r e  to  be  used to probe the interactions of the con- 
duction electrons with the environment in the metal, then clearly a theory adequate to 
support these experiments must be more detailed than any theory is at the present. The 
ideal theory would allow the inverting of galvanomagnetic data to  obtain the scattering 
probability Q(k, k'). This goal cannot be completely attained, but this report  provides a 
method to partly f i l l  the needs. The scattering probability is used in a procedure that 
gives a closed-form solution to  the Boltzmann equation for a metal in static, homoge- 
neous, electric and magnetic fields. 

From a model for the Fermi  surface and the scattering processes, the resistivity 
tensor may be calculated for any magnetic field strength o r  orientation with respect to 
the crystal axes. A feature of this formalism is the ability to  separate geometrical ef- 
fects  caused by the Fermi  surface topology from anisotropic scattering effects. For a 
large number of metals the Fermi surface has  been very accurately determined from 
band structure calculations, supported by experiment. Using this information as input 
to  the procedure makes possible quantitative judgments about the effect of the scatter-  
ing. The example of the degenerate kernal model discussed in the preceding section 
demonstrates the strong role  that the scattering plays in the galvanomagnetic properties 
even for a metal with the simplest Fermi  surface, a sphere. The vector mean free 
path nk) has been introduced (refs. 8 and 9) to  treat as completely as possible the ani- 
sotropies inherent in the system. 

Boltzmann equation describing a metal in static electric and magnetic fields, for the 
case of elastic scattering. A s  discussed in the text, this limitation upon the scattering 
is not stringent; the formalism may be generalized to include inelastic scattering, at a 
cost of a substantial increase in the numerical work that implements the formalism. In 
addition, the linearization procedure and the method of solution of the BE should provide 
a valuable method of attack for .other transport phenomena. Following the discussion of 
Taylor (refs. 8 and 9) for  the thermopower of copper, this procedure is applicable to a 

- -  

The formalism discussed in this report  has been limited to  the solution of the 
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description of thermomagnetic effects in metals, currently a subject of substantial ex- 
perimental interest. 

In summary, a formal solution to the linearized Boltzmann equation, valid for any 
strength of the magnetic field, has been presented. The numerical procedure to apply 
this formal solution t o  any Fermi  surface to investigate the scattering processes in a 
metal has been described. As  an example of the power of this technique, some con- 
sequences of a scattering model introduced by Sondheimer (ref. 21) for a spherical 
Fermi surface model have been investigated. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 8, 1969, 
129-02. 
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APPENDIX A 

SCATTERING AND MAGNETIC SCATTERING EIGENVALUE PROBLEM 

In the course of solving the linearized Boltzmann equation it is necessary t o  con- 
sider the eigenvalues and eigenfunctions of two non-Hermitian operators. In addition to  
the existence of such eigenvalues it is also necessary to  assume that these eigenfunctions 
form a complete set for  the expansion of functions within a Brillouin zone. The two 
problems are, in fact, quite similar,  and it is instructive t o  consider the simpler case 
of the field-free scattering eigenfunctions first. 

The integral operator Q is a real, bounded, positive-definite linear operator 
(ref. 23), and as such possesses a real eigenvalue spectrum. It is not necessary t o  as- 
sume that the kernel Q(k, k') is degenerate, so  that, in general, the number of eigen- 

- _  

values is denumerably infinite, but bounded. Unfortunately, the operator which appears 
in the solution of the Boltzmann equation, as evidenced in equation (28), is q-lQ, which 
will not be  Hermitian unless q is constant. Instead of this operator, the following 
eigenvalue problem can be considered 

Yn(k')dQ' = anyn(&) 

- -  
Since Q(k, k') is a probability function, the integrated kernel q is a real function of k 
and will not vanish unless Q(k, k') is identically ze ro  for k and all k'. The kernel of 
equation (Al) is symmetric, real, and continuous, so that the existence of the eigen- 
values cyn and the eigenfunctions Yn&) are guaranteed. 

Now define a new set of functions an(%) such that 

- -  

Then equation (Al) may be written as 

which is just the eigenvalue problem for  the operator q-'Q. Thus, the eigenvalues of 
q-'Q are identical to the eigenvalues of equation (AI), and the eigenfunctions are obtained 
by inverting equation (AZ). 
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The orthogonality condition for the scattering eigenfunctions (eq. (29)) follows 
from the symmetry of the kernel of equation (Al). By writing equation (Al) for another 
eigenfunction (e. g. , Yr@)) and using the symmetry of the kernel, the result  is 

(ar - an)fir&)Yn&)dS2 = 0 

Thus, for an # ar7 the desired orthogonality is attained. If, on the other hand, 

orthogonalization process (ref. 23). 
mediately by the substitution of equation (A2), that is, 

an - - or, the degenerate eigenfunctions may be made orthogonal by the Gram-Schmidt 

From this relation then, equation (33) follows im- 

The completeness of the scattering eigenfunctions an can also be seen from equa- 
tion (A2). The Yn&), being an orthogonal set  of eigenfunctions of a Hermitian operator, 
form a complete set  of functions. This means that, given a function f&), there  exists a 
set  of coefficients Cn such that 

n 

Since, from equation (A2), each an is obtained from the corresponding YI1 by division 
by the function q&) for all  n, then 

in which the coefficients Cn a r e  the same as in equation (A4). 
pansion 

Equivalently, the ex- 

may be  inverted to  obtain the Dn by multiplying by the product arq and using equa- 
tion (A3), that is, 
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which is another way of describing completeness. 

independent scattering eigenfunctions. Not only is this discussion important in its own 
right; it is useful in guiding the treatment of the magnetic scattering eigenvalue problem. 
The problem involved here  lies in the fact that the magnetic scattering operator T, al- 
though it is the product of two Hermitian operators, is not itself Hermitian, in general. 
Consider a more general problem and write an operator T as the product of two oper- 
ators 

This completes the discussion of the existence and completeness of the field- 

where P and Q (and thus Q-') a r e  each Hermitian. The operator T will not be 
Hermitian unless P and Q-l  commute. There is the additional assumption that Q is 
a positive-definite, bounded, linear operator. With this assumption the formal definition 
of the square-root operator Q112 is possible (ref. 46). 

the product 
Following the discussion of the scattering operator, define a new operator T' as 

Since T'  is Hermitian, the purpose of the construction, it has eigenvalues and eigen- 
functions defined by the equation 

Now, operating on the left side of equation (A9) with Q- ' I2 resul ts  in 

Q- P (.- '12xn ) = rn(Q-l12xn) 

Thus, a comparison of equation (A10) with (A7) shows that the eigenvalues of T are 
identical with the eigenvalues of T '  (and as a consequence must also be real) and the 
eigenfunctions of T are the eigenfunctions of T '  modified by the operator Q-'12, or 
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Since the xn form a complete set, the same arguments as presented before indicate 
that the bn a r e  also complete. 

tions: 
This discussion applies to  the magnetic scattering problem by making the associa- 

k -  A 

P - -  (vk h x V) 
B 

Although this discussion is instructive when applied to  the magnetic scattering operator, 
it cannot be considered rigorous. The difficulty lies in the fact that the operator P, 
being by association a derivative operator, is not bounded. There is no guarantee that 
the eigenfunctions of T lie in the space spanned by the scattering eigenfunctions an@). 
The question then is the existence of the expansion (eq. (34)) for the bl in t e rms  of the 

an. The ultimate justification for the use of this expansion is that solutions for the ex- 
pansion coefficients yln can be  obtained through the solution of equation (34). 
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APPENDIX B 

PROOF OF GROUP THEORETIC THEOREMS AND RESULTS 

This appendix concerns itself with the theory of group representations and the prop- 
er t ies  of the scattering eigenfunctions of equation (28). Before starting this topic, it 
will be useful t o  expand upon the discussion of the basis  functions of irreducible repre-  
sentations presented in the main text. 

The configuration space used here is the set  of all points on the Fermi surface, 
which is considered to be a single sheet with a single-valued position vector k at each 
point. Under the action of a group 9, two points labeled E and k' a r e  equivalent if 
k' = Rk, where R is a 3 X 3 matrix representation of a group operation 9 of $. If the 
group is of order g, then a point k will have g equivalent points (or images) on the 
surface, under 9. Not all  k will have g distinct images, and these points are usually 
referred to  as "high-symmetry" points. 

The principal problem of interest is the effect of the group operation W upon a 
function of k. The general definition of this action is (ref. 34) 

._ - 

where, again, k' = Rk. The notation here is slightly deceptive. The left side of equa- 
tion (Bl) means that the value of the function 9 f ,  whatever that is, when evaluated at the 
point k?, is equal to  the value of the function f at the point E. 

The partners of a set of basis  functions a r e  defined by the equation 

h=l 

This equation means that, given the ath irreducible representation of 9, there  is a 
set  of no functions, where n is the dimension of CY, such that a transformed func- 
tion 91) evaluated at the point k, is a linear combination of all the basis functions. 
These functions a r e  not uniquely determined until all the matrices of the irreducible 
representations, the DC)(R),  a r e  explicitly stated. All that is guaranteed is that such 
a basis set  exists for all a of 9, and that there  is a prescription for obtaining the 
functions, given the D matrices. 

inverted to obtain 

CY 

P 7  

The inverse of the group operation 9 must be in 9, so  that equation (Bl) may be 
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-1 - f&') =9 f(k) 

Thus, the basis function, evaluated at an image point is 

since the irreducible representation may always be chosen to  be unitary. The relation, 
of fundamental importance in the material to follow, relates the basis function at an  
image point to  the set of basis functions evaluated at the generating point. 

It was discussed briefly in the main text that it is possible to  form linear combina- 
tions of the spherical harmonics for a given I t o  form basis functions for some irre- 
ducible representation of a point group 9'. The point of importance is that an infinite 
set of such linear combinations, in other words for all I ,  forms an orthonormal complete 
set of functions, spanning the same space of functions as do the spherical harmonics. 
The full discussion of the relation between the symmetry-adapted functions and the 
spherical harmonics is well documented in the l i terature (e. g . ,  the excellent art icle 
by Altmann and Cracknell (ref. 37) and the references quoted therein) and is beyond 
the scope of the work being described here. 
such a set of functions, characterized by XI Q, where 

Let it suffice to say that there exists 
jr - 

S 

The appropriate orthonormality condition is 

1 Xi :r *&)Xir &) dS = GI1 ,6 j ,  Er  r ,  

jr - The notation used, as described in the main text, is that XI (k) is a basis function that 
t ransforms as the rth column of the th irreducible representation, and is a linear 
combination of spherical harmonics of order 1. This discussion is sufficient to  prove 
theorem III. 

Theorem 111: A function y r 6 )  is a basis function for the group g if and only if 
3 



Proof: If equation (B5) is assumed to  be true,  then operation upon y r  by an element of 
9 gives 

J 

=E bzxXjs&)Dir(R) by equation (B2) 
1 S 

S I  

or, finally, 

as desired. A s  usual, the t' iftt  part of the proof is more involved. 

function belonging to the jth irreducible representation of 9 is 
Since the Xir form a complete set of functions, the most general expansion for a 

The part of theorem I11 that is to  be proven is that the expansion coefficients b are 
independent of the column indices r and s. This expansion, when substituted into 
equation (B2), gives 

and 
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Equation (B2) states that these two forms must be identical. Since the Xir a r e  ortho- 
normal, a multiplication by an Xjr* and an integration will reduce both forms, and the l 
result is 

S S 

for each j, I, 7 ,  and p. The pertinent result  from group theory is an orthogonality 
relation for the matr ices  of irreducible representations 

P 

which is simply the statement of unitarity of the irreducible representations. 
result  then, 

Using this 

b;' = cbas DL,(R)DL,(R) 
P S 

The final result  is obtained from a second orthogonality relation 

where the dimension of the jth representation is again n.. Thus, summing over all 
elements of the group in equation (B7) and applying equation (B8) give 

I 

J 

for  all r. This means that the bl are independent of r, and completes the proof of 
theorem m. 

Theorem 11 (p. 23) is a statement about the form of the expansion of a kernel func- 
tion in t e r m s  of the symmetry-adapted functions and, by extension, about its eigenvalues 
and eigenfunctions. 
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Theorem II: Given a function Q(k7 k') that is invariant under all operations 9 of a 
group 9 (i. e., Q(k7 k') = Q(F& Rk') for all W in 9), then there  exists the expansion 

- -  

- -  - 
Proof: The function Q(k, k') considered successively as a function of k and a function 
of k' certainly possesses the general expansion 

- -  
But Q(Rk7 Rk') must have the form, from equations (Bl) and (B2), 

The last two forms must be equal; and using the orthonormality of the symmetry- 
adapted functions they result  in 

P7 P' 

A summation over the group elements and the second orthogonality relation (eq. (B8)) 
yields 

The 6-functions may be used to remove the extraneous indices, and then 
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for all r. A s  in the case of the proof of theorem III, it is clear that Ah,  cannot depend 
upon the column index r, and then the final result  is the statement 

that was to  be proven. 
- -  

The expansion for the kernel Q(k, k') may be integrated to  obtain the function q@). 
For the case of a spherical Fermi  surface, in which the factor of the magnitude of the 
Fermi velocity in dS2 is a constant and may be removed from the integral, the orthogo- 
nality of the symmetry-adapted functions leaves only the 1 = 0 te rm for Z', that is, 

2 

For a nonspherical surface, the magnitude of the Fermi  velocity is not a constant, 
although it is a scalar.  Thus, the integral over k' involves an integral of XlT over a 
linear combination of scalar  symmetry-adapted functions, and the result is clearly still 
a scalar in this case. 

- 
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